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ABSTRACT

Dynamic buckling loads are obtained for axisymmetric spherical caps with
initial imperfections. Two types of loading are considered, namely, step
loading with infinite duration and right triangular pulse. Solutions of per-
fect spherical caps under step loading are in excellent agreement with previous
findings. Results show that initial imperfections do indeed have the effect
of reducing the buckling capacity for both dynamic and static responses,
although they are affected in a different manner. From the solutions obtained
for triangular pulse situations, it is revealed that pulse duration has a
very significant impact on the magnitude of the dynamic buckling load. When
comparing these solutions with those of step loading, it is concluded that
the step loading with infinite duration is the limiting case of a triangular
pulse, and that the step loading provides the most severe loading situation

for dynamic analysis.
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INTRODUCTION

Dynamic buckling analysis of shell structures has received considerable

attention in the literature. Shell structures designed according to quasi-

static analysis may fail under conditions of dynamic loading. It is also

found that initial imperfections in spherical shell structures have the effect
*
of reducing shell static buckling capacity (Refs. [i,2,3,h]). Initial imper-

fection of shell structures, in fact, is sometimes used to account for the

discrepancy between results obtained from experimental tests and theorectical

analyses.

The problem of axisymmetric dynamic snap-through of clamped spherical t;

caps under implusive loading was first solved by Fuupnrey and Bodner [5]. The

same problem under instantaneously applied step loading was studied by

Budiansky and Roth [6] and Simitses [7]. Rayleigh-Ritz or Galerkin methods

were used for shell dynamic buckling analysis in those studies. Archer and

Lange [8] discussed the same problem numerically by solving governing differen-

tial equations by a combination of finite-difference technique and Potter

method. Lock, Okubo and Whittier [9] approached this problem by performing

experiments for a particular shell geometry.

The same problem under a uniform step pressure is solved numerically

in Refs. [lO—lh] and results obtained from these investigations are in

reasonable agreement. From this agreement, it may be said that the axisym-

metric dynamic buckling criterion - dynamic snap-through - suggested by

Budiansky and Roth [6] has generally been accepted.

Asymmetric dynamic buckling analysis of spherically caps is examined in

Refs. [%3 +15! in which a perturbation approach was utilized to deal with

asymmetric deformation mcde.

* Numbers in brackets designate references at end of paper.




Effect of initial imperfections on static shell buckling analysis was

studied by Hutchinson [1} who employed the Koiter approach to determine the { 3

% approximate asymmetric buckling load for spherice) shells with initial

imperfections. Koga and Hoff [2] gave the values of buckling pressure for
complete shells with axisymmetric dimple type imperfections. Numerical solutions
for asymmetric buckling loads are given in Refs. [é,h] for spherical caps with
initial asymmetric imperfections.

In this paper, attention is focused on the effect of initial
imperfections on the dynamic buckling of axisymmetric spherical caps. The

3 | 3
| influence of different types of dynamic pulse shape on shell buckling capacity |

is also considered. ;
In the next section, the governing equations and solution methods utilized

in the present paper are discussed. This is followed by a description of ’

dynamic buckling criteria. To verify the present approach, a comparison of
the present results with those in the literature is given for axisymmetric
buckling loads of spherical caps under uniform step pressure and with iritial
imperfections of different magnitude. Also presented are the solutions
associated with a triangular pulse with different time durations. Conclusions

and a general discussion are given in the final section.




GOVERNING EQUATIONS

The geometry of a clamped spherical cap is shown in Fig. 1, in which
H is the central height and R denotes the shell radius; ¢ is the base radius;
W(r,t) and U(r,t) are displacement components along normal and tangential
directions at time t, respectively, and Wi{(r,0) is the initial imperfection.

The undeformed shape of the perfect shell can be adequately described by

z = H[l e (r/a>?] (1)

where r is the radial coordinate.

The general differential equations for the response of spherical caps
with initial imperfections are given in Ref. [h]. In this paper, we consider
only the situation of the axisymmetric deformation with the inclusion of

dynamic effects. The equilibrium equations associated with this situation are

DY“W - Nr(wf + l) -N (w.t"_ .‘L)
8
R r R

(rNp)' - Ng = rphU (2b)

where v2( ) = ( )"+ ( )'/r; D = En3/12(1 - v2) , E is Young's modulus,
h is the shell thickness, v is the Poisson's ratio, and p is the mass per
unit volume of shell; prime and dot denote differentiations with respect
to r and t, respectively, and 6 is the circumferential coordinate; q(r,t) is

the applied loading and We = Wi + W; stress resultants are related to strains by

Ny [Eh/(l - v? )] (8 + VEy)

Ny = [En/(1 - v2)] (g, + vE,.)

(3)

in which strains are expressed in terms of displacements by

- ot N al 1)2 vy
€ =V L . (W')2 + W Wi




The terms on the right hand sides of Egs. (2) are the inertia forces

due to normal and radial displacements of the shell. For convenience, the d-

following nondimensional quantities and operations are introduced:

x = r/a mt = 12(1 - v2)

R = a?/oH Qop = YEN/R?m?

A2 = m2a?/Rh p(r,t) = alr,t)/q . 5
() =2a( )/ (") = a( )/ot

T = /57;1:21: u = aqU/n?

w = W/h w; = Wy/h

where q., is the classical buckling pressure of a complete spherical shell of
the same redius of curvature and thickness.

With the adoption of Egs. (5), the nondimensional forms of Eqs. (2)

become
Vv - 12(eg + ve,) (V2w + V2uwy)
- 12(1 + v) ;‘1..; (e, + €g)
= F2(1 <) (er - ee) (w" + w;l')
NI AW (6a)
u"+“;'.-§:—2- +gw) =0 (€b)

Where € and €q are nondimensional quantities of Er and Ee, respectively:

€p = u' - %;w + %.(w')z + w'w!

i

Vi (1)
€g =%-%2w




b

and glw) = £'(w) + ve'(w) + (1 - v) [fr(w) =1 (w)]/x
r 0 6
fr(w) =-;§. w+ L(w)?2 + w'wi
£,(w) = - 5 w (8)
f;(w) = - ﬁ%-w' + w'w"' + w'w; + w"wi
L4 AZ 1
fe(w) = - ;!.w

It is noted that, in view of the assumed shallowness, the effect of
radial inertia force is neglected in Eq. (6b). Egs. (6) constitute the basic
equations for the analysis subjected to prescribed boundary conditions.

Boundary condition considered in this paper are clamped:

u(1,t) = w(1,t) = w'(1,t) = O. Due to symmetry at the apex, we also

have u(0,t) = w'(0,t) = O.
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METHOD OF SOLUTION

Egs. (6) are not only lengthy but also highly nonlinear in w, the major
variable. The solution plan is to superpose a finite-difference mesh on the
one-dimensional shell domain, replace nonlinear differential equations
Egs. (6) by a set of two nonlinear algebraic finite-difference equations, and
solve the resulting set of equations by the nonlinear relaxation method.

Details of the nonlinear relaxation technique will not be discussed here;
description of the technique is given in references[lG,li]. Simply put, the
nonlinear relaxation technique offers a method of systematically reducing the
errors at each nodal point for each algebraic equation to some acceptable level.

Rather than solving all two differential equations simultaneously, we elect
to solve first the w system of difference equations in an iterative manner,
and subsequently the u system of :equations. We revert back to the w system
again and the u and so on, until the percentage change of the displacement
at all nodal points is always less than 0.0001 percent on the (absolute)
average.

The second time derivative of w in Eq. (6a) is approximated by the

Houbolt's third-order buckwards difference expression [}é]:
W(x,t) = (1/62)[2w(x,t) - Sw(x,t - &)

+ bw(x,t - 26) - w(x,t - 36)] (9)
where § = At is the equal time increment.
The accuracy of this representation is of order 82, Special attention is
devoted to the first few time steps where Eq.(9) cannot be applied directly.
Before giving the expression fér these first few time steps, we note that

the initial conditions are of the form

w(ix,0) =0 w(x,0) =0 (10) “'




From Eq.(10), expression of Eq. ( 9) for the first few time steps can

readily be obtained as (Ref. [10])

1Y "v= 0, wix,0) =0

2) 1 = 6; since w(x,0) = 0, we have wix,-8) = w(x,8)

i and hence %(x,8) = (2/62) w(x,8)

. 3) 1t =28; %W(x,28) = (2/62) [w(x,26) = 3w(x,6)]

L) 1 > 28, Eq.(9) can be applied directly.

In our numerical computation, the number of nodal points are selected
such that a subsequent increase in nodal points does not significantly affect
the magnitude of the static buckling load. With this consideration, 14 nodal
points for A = 5 and up to 22 points for A = 10 are adopted; A Poisson's
ratio of 1/3 is also used. A time step must be selected very judiciously.

A good selection is such that the results are within a desired accuracy, but
not too small in light of computer time considerations. A reasonable com-

promise of equal time increments of § = 0.10 is used; this same time increment

is also selected in Ref. [11].
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DYNAMIC BUCKLING CRITERION

-

Criteria for dynamic axisymmetric buckling of the shallow spherical
shell are not as well defined as for static buckling, and require an eval-
uation of the transient response of the shell for various load levels.

The criterion adopted most widely (Refs. [10,11,12,1%]) is based on
plots of the peak nondimensional average displacement in time history, A max,
of the shell structure versus the amplitude of the load where A is the
average displacement and has been defined [11,1%] in dimensionless form as

follows:

a a
A =f rwdr /f rzdr (11)
o o

The numerator is the volume generated by the shell deformation and the
denominator is the constant volume under the cap.

There is a load range where a sharp jump in peak average displacement
occurs for a small change in load amplitude. The inflection point of the
load deflection curve in this range is regarded as the buckling load; this
procedure is called the "inflection point method". When the buckling load
is defined in this manner, it is also referred to as the dynamic snap-
through load.

The method ic demonstrated by a typical example shown in Fig. 2 . 1In
this figure, A - 1 curves are displayed for several uniform load parameters p
(this example is related to a clamped spherical cap of A = 5 under step
uniform pressure of infinite duration). A plot of Amax vs. P based on
information given in Fig. 2 1is shown in Fig. 3 . It is clear from this
figure that there is a sharp jump at p = 0.46, and according to the criterion
defined above, this value is taken as buckling pressure for this particular

spherical cap geometry and load situation. '

R R R




CHECKS WITH EXISTING SOLUTIONS FOR PERFECT CAPS

The general program developed for buckling of spherical caps with initial
imperfections [3,&] is modified to account for the simpler axisymmetric spher-
ical cap under dynamic loading. In order to test the validity of this modified
program, computer runs are made to determine dynamic buckling loads of spherical
caps for which numerical results exist.

Fig. 2 represents A - 1 curves for different load levels for the axisym-
metric spherical cap of A = 5 under uniform step pressure of infinite duration;
the Apox - P curve associated with Fig. 2 1is given in Fig. 3 . According to
the dynamic buckling criterion described earlier, dynamic buckling loads for
A = 5 under step loading is taken as p,. = 0.46 (where Doy is denoted as the
dynamic buckling or snap-through load).

Computer runs also are made for A = 7.5 and 10; the A - 1T curves of these
two geometric parameters are shown in Figs. 4 and 5 , respectively. A
summary of these values along with the results obtained elsewhere are tabu-
lated in Table 1 for comparison. It is found from this Table that the present

values are in very good agreement with solutions presented in Refs. [10—12,1&].

Table 1 Dynamic Buckling Pressure for Various Values of Spherical Cap

Parameters
A 5 () 10
Present L6 Lk Lo
Ref. 10 ko &5 L2
Ref. 11 45 Ly «37
Ref. 12
Ref. 1L




- 10 =

The present solution is carried out using time steps 6§ = 0.10 with
14 to 22 meridional finite difference stations for A = 5 to 10. The length ’
of response calculation time Tt carried out in computer runs is varied from

case to case with the criterion that, in the neighborhood of the buckling load,

T is sufficiently large enough to allow A - T curves to fully develop. As a

: result we obtain more accurate buckling loads, and save computer time when

load levels are other than in the neighborhood of the buckling pressure.

More discussion in this regard will be provided in the next section.

It is interesting to note from Table 1 that the magnitude of dynamic

S

buckling loads is not sensitive to shell geometry A. This finding suggests |
that the dynamic buckling load obtained for spherical caps represents the

value for the complete spherical shell. However, this observation does not

apply to the static buckling situation, since results obtained in this study A
show that static buckling loads are 0.65, 1.02 and 0.85 for A = 5, 7.5 and

10, respectively.
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DYNAMIC BUCKLING OF SPHERICAL CAPS WITH INITIAL IMPERFECTIONS

With the validity of the computer program established for dynamic buckling
analysis as demonstrated in the previous section, we now proceed to inves-
tigate the effect of initial imperfections on the dynamic buckling capacity
of spherical caps. We shall also examine how different types of loadings with
various time duration affect the dynamic buckling loads.

Two types of dynamic loadings are considered herein, namely, uniform step
pressure of infinite duration and a right triangular pulse with various time
duration. Solutions obtained in this study will give some indications on the
most severe type of dynamic loading situations. Specific results on these
two types of loading situations are discussed separately in this section.

The axisymmetric initial imperfection adopted in this study is of the
dimple type which was also used by Koga and Hoff [2]. This type of imper-

fection is expressed mathematically as
w; = (Wo/h) (1 - x2)3 (12)

where W, is the maximum imperfection which occurs at the shell apex. Selection
of this expression is, in fact, quite arbitrary; however, it does provide an
adequate description for actual shells since the important parameter is the
maximum eccentricity and not the imperfection shape function.

Since dynamic buckling pressure is not sensitive to spherical cap geo-

metric parameter (A) as can be seen from Table 1, we select A = 5 for all

analyses in this section.
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Step Loading
3

Let us first consider buckling analysis of the axisymmetric spherical cap
(A = 5) with initial imperfections under a uniform step loading of infinite
duration. Some typical A - p curves associated with various load levels are
given in Fig. 2 . From this figure, it is noted that a different response
calcualtion time t has been utilized for different load levels. Although the
reason for using this strategy was mentioned briefly in the last section, a
more detailed discussion in this regard is given here. As is apparent from
Fig. 2 the peak value of A occurs after several cycles of oscillation for
the load level p above the critical value of p for snap-through (we shall call
this value pop the dynamic buckling or dynemic snap-through load). It is
also observed that for the load levels above S the larger the value of
P, the smaller the response calculation time taken for A to reach its peak
value. Clearly, a flexible response calculation time is desired to cope with
various load situations.

The strategy initiated here stems from the fact that in dynamic analysis
with significant nonlinearity, time consuming iteration schemes and a huge
number of time steps are usually involved. This strategy perhaps can best
be accomplished through the execution of the computer program in an interactive
mode. By inserting some simple statements in the program, execution of
the program will pause after a fixed period of response calculation time and
the user can decide to continue or terminate the execution depending on
whether A has reached its peak value. On the other hand, for a load range very
close to pyy , sufficient response calcualtion time should be given to insure
that the shell structure does not eventually buckle.

This approach should predict more accurate buckling loads and will also
save considerable computing time. Huang [10] carried his solution for A = §

out to T = 14 using a very fine time increment § = 0.02 and (4 + 1) stations.
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Stephens and Fulton [1%] obtained their solutior upto t = 60 for A =5
and T = 120 for higher values of X by using § = 0.10 and 20 stations. Ball
and Burt [lh] carried their results out tot = 50 for A = 5, and T = 120
for A = 8 and 11 stations with § = 0.05. As mentioned earlier, in the
present calculations, we employ different response calculation times for

di fferent load situations; 6§ = 0.10 and 14 to 22 stations for A = 5 to 10
are selected. The convergence criterion adopted is that the average ibso-
lute percentage change of displacement functions is less than 0.000l.

With adoption of this strategy for the selection of response calculation
time, a series of runs are made for an axisymmetric stherical cap (A = 5)
with different magnitudes of initial imperfections. Fig. 6 represents the
Apax — P curves for this shell geometry with imperfections Wo/h ranging from
0.1 to 1.0. Aslo included in this figure for comparison purposes is the
result for the perfect shell which has already been displayed in Fig. 3 .
According to the dynamic buckling criterion described earlier in this paper,
the dynamic buckling loads (pcr) are found to be 0.46, 0.39, 0.28 and 0.185
for imperfections of WO/h = 0, 0.1, 0.5 and 1.0, respectively.

Sudden jump in A max 1eer the critical load area is very obvious for
wo/h = 0, 0.1 and 0.5. For the case of Wo/h = 1.0, the Amax -p curve does
not exhibit such a drastic change in displacement and the inflection point
technique is used to determine the magnitude of the buckling load. Suffice
it to say that the sudden jump phenomenon may be viewed as a particular case
of the situation whose dynamic buckling load must be determined by the inflec-
tion point method. Therefore, the inflection point method can be regarded
as a more general means to obtain dynamic buckling loads.

A plot of pgp Vs. Wo/h based on the results displayed in Fig. 6 is
shown in Fig. 7 . From this figure it is obvious that initial imperfections

do indeed have the effect of reducing dynamic buckling capacity of spherical caps.
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For comparison purposes, static buckling loads are also obtained for
the same shell geometry and initial imperfections, and these results are
also superposed in Fig. 7T . It is noted from this figure that the two
curves intersect at about wo/h = 0.Th. It is observed from this figure that,
when comparing with dynamic buckling loads, static response yields higher
buckling values for Wo/h in between 0 and 0.TW, but, on the other hand, has
a lower buckling value when Wo/h is greater than 0.T4. Evidentally, when
imperfections exist, the static response reduces shell buckling capacity at
a faster rate than that by dynamic response. In other words, static response
of axisymmetric spherical caps is more sensitive to initial imperfections

than dynamic response. This finding is significant in shell structure design

if initial imperfections are taken into consideration.
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Triangular Pulse

Having analyzed the dynamic buckling response of the spherical cap with
an axisymmetric imperfection and a spatially and temporally constant pressure
field, we turn next to the same problem except for the pressure pulse which
is now taken as triangular rather than constant with time. The right tri-
angualr pulse shown in the subset of Fig. 8 is taken as representative cof
this type of loading. At dimensionless time T* the pressure has a zero value.

Except for some minor modifications made to deal with the time-varying
nature of applied loading, the same computer program and strategy described
earlier are utilized for this analysis.

Four triangle pulses with duration t* = 0.544, 2,176, 10.88 and 21.76
are considered. The same spherical cap geometry (A = 5) and magnitude of
imperfections are retained. Fig. 8 presents the results of the axisymmetrical
spherical cap under triangle pulse of T* = 0.544 and with imperfections
Wo/h =0, 0.1, 0.5 and 1. According to the dynamic buckling criterion adopted
in this paper, buckling loads are discerned as 5.05, 4.8, 3.95, and 3.1 for
Wy/h = 0, 0.1, 0.5, and 1, respectively. Figs. 9 , 10 , and 11 display
the results associated with triangular pulse durations t* = 2.176, 10.88 and
21.76, respectively.

A summary of numerical results shown in these figures is given in Table
2 for comparison. Also included in this table are the values for static
response and step loading of infinite duration. In addition to buckling
loads, Table 2 also gives for most situations the dimensionless buckling time
and finite difference node where plasticity begins. One interesting and
important observation made from this table is that, for the cases of very

short triangular pulses (t* = 0.54l and 2.176), the spherical cap buckles

after removal of the pulses., Evidently, the kinetic energy imparted to the

cap by the pressure pulse was enough to propel the cap into a buckling mode




_

Table 2 Dynamic and Static Buckling Loads for A Clamped
Axisymmetric Spherical Cap (X = 5)##

Imperfection, Wy/h
0 0.1 0.5 1.0
Loading
B T L B T L . B T 1] B T
Statié 0.65 s 0.55 S S
Dynamic
Step Loading 0.46 23 . 0.39 30.5 14 0.28 21.5 1k 0.185 | 15
Triangular Pulse
™ = 0.54k4 5.05 2.6 TS 4.8 7.8 L 3.95 1.7 3 3.1 k.o
2.176 1.95 3.5 T 1.45 4.3 3 1.25 3.5 T [0.T15 | b3
10.88 0.685 715 12 0.615 7.8 6 0.k 7.0 3 |0.26 7.k
21.76 0.565 12.4 13 0.51 8.7 3 0.335 8.5 5 0.215 6.5
#%* B, T, L and t* in this Table, respectively, stand for
B = Buckling load
T = Dimensionless buckling time (some of these values are obtained by interpolation)
L = Finite difference node where plasticity begins (See Fig. 12) (some of these values which were not calculated in
earlier computer runs are shown with =)
T = Dimensionless time duration of triangular pulse (at t = t*, traingular pulse has a zero value, see subset of

Fig. 8)
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well after load removal. An examination of L nodes provided in this table
reveals that no regular pattern is developed for the location as to where
plasticity may begin (Mises criterion utilized).

Fig. 13 exhibits the relationship between dynamic buckling load Por
and pulse duration T for different magnitudes of imperfections. This
figure demonstrates that the length of ™ has a very significant effect on
the magnitude of the dynamic buckling load. For the same WO/h, this figure
shows that dynamic buckling load for T = 0,544 is about 9 to 11 times
greater than that for T = 21,76,

Fig. 14 gives the curves for dynamic buckling load versus initial

imperfection for various triangular pulse durations. Also shown for com-

parison purposes is the result of step loading which was displayed in Fig. 7.

As can be seen from this figure that, for a given magnitude of imperfection,
the shorter the triangular pulse, the higher the buckling load. This figure
also reveals that the limiting case of triangular pulse of various time
durations is the step loading of infinite duration. It is important to
point out that this limiting case represents the most severe loading situa-
tion for dynamic buckling analysis, since it yields the lowest values of

dynamic buckling loads.

itas
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DISCUSSION AND CONCLUSIONS ’ j

An investigation has been carried out for dynamic buckling analysis of
axisymmetrical spherical caps with initial imperfections. Two types of load-
ing are considered, namely, step pressure of infinite duration and triangular
pulses of various time durations. Governing equations given in Refs. [é, ] ;
for buckling analysis of spherical caps with asymmetric imperfections are

modified to account for the axisymmetric nature of the problem and dynamic

effects. Central finite differences and Houbolt's backwards difference scheme
[18] are used to replace spatial and temporal derivatives, respectively. The
nonlinear relaxation method [}6,17] is' then employed to solve the resulting
algebraic equations.

Unlike static buckling analyses, dynamic buckling loads are deter-
mined from a displaced volume-pressure (Amax -~ p) curve by the inflection point
method [1 ]. Dynamic snap-through occurs when there is a sharp jump in the
Apax - P curve [lé]. This indicates that the maximum amplitude of oscil-
lation of the shell has a discontinnous change.

To verify possible validity of the present computer program, a series
of runs are made to determine dynamic buckling loads for axisymmetrical
spherical caps of A = 5, 7.5, and 10 under uniform step loading of infinite
time duration. Current results along with previous findings [10-1&] are

tabulated in Table 1 for comparison. Good agreement among these solutions

is observed; it may be concluded that the inflection point method has been

generally accepted as a dynamic buckling criterion. ﬁ
Since dynamic buckling loads are not sensitive to shell geometry as can

be seen from Table 1, we select A = 5 for all analyses in this paper. A

dimple type of imperfection is also adopted in this study which provides a

very adequate description of the local nature of initial imperfections in ﬁ’

spherical shells.
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Results of the axisymmetric spherical cap (A = 5) under step loading are
obtained for maximum imperfections of No/h = 0.1, 0.5 and 1.0. These resuits
are displayed in Fig. 6 along with that of the perfect shell. Buckling loads
obtained from Fig. 6 by the inflection point method are presented in Fig. 7T .
Also displayed in Fig. T , for comparison purposes are the solutions from
static buckling analysis. It is observed from this figure that, for wo/h less
than about 0.Th4, the static buckling load is higher than the dynamic buckling
load. However, when W,/h 1is greater than 0.T4, the above situation is
reversed. This result demonstrates that the static buckling load decreases
more rapidly than the dynamic buckling load becaus~ of imperfections. Moreover,
the static response is more sensitive to initial imperfections than the dynamic
response.

It is important to point out that imperfections do indeed have the effect
of reducing buckling capacity for both static and dynamic responses, although
they are affected in different manners.

Calculations are also carried o»t for the same shell geometry with the
same magnitude of imperfections under right triangular pulses. Four different
pulse durations are considered, namely, t* = 0.54kL, 2.176, 10.88 and 21.76.
Results of Amax - p for these four cases are shown in Figs. 8-11 , respectively.
Dynamic buckling loads obtained from these figures are displayed against pulse
duration t* in Fig. 13 for various magnitudes of imperfection and against
initial imperfection in Fig. 14 for different pulse durations. Also displayed
in Fig. 14 is the solution for the step loading. From Fig. 13, it is found
that pulse duration has a very significant impact on the magnitude of dynamic
buckling load. For example, for the same imperfection, dynamic buckling load
for t* = 0.5kl is about 10 times higher than that for t* = 21.76. This obser-
vation can also be seen from Fig. 14 . In fact, Fig. 14 shows that the limiting

case of the triangular pulse is the step loading of infinite duration, and that
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the step loading represents the most severe loading situation for dynamic
buckling analysis, since it yields the lowest values of buckling loads.

A summary of results displayed in Fig. 8-11 along with those of static
and dynamic step loadings of infinite duration is given in Table 2 for com-
parison purposes. In addition to buckling loads, Table 2 also provides
information for the buckling time and finite difference node where plas-
ticity begins. Two observations are made: first, for the cases of very
short triangular pulses ( ™ = 0,544 and 2.176), the spherical cab buckles
after removal of the pulses; secondly, no regular pattern is developed for
the location as to where plasticity may begin,

As a final remark, the flexible response calculation time option set
up in the computer program enables users to continue or terminate the exe-
cution. This option not only provides a possibility of obtaining more ac-
curate dynamic buckling loads, but also saves considerable computing time

for the cases where additional execution appears to be unnecessary.
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